

C5 series package: 1200V 900A IGBT module

Datasheet

Equivalent Circuit Schematic

Features:

- Trenchgate Gen.7 IGBT technology
- VCE(sat) with positive temperature coefficient
- High RBSOA capability
- Low static losses: VcE(sat) = 1,55V@25°C
- Low dynamic losses

Options:

- Pre-applied TIM (option +M01)
- Adoption for parallel connection (Vf selection)

Typical Applications:

- Motor Drives
- Solar Applications
- UPS Systems
- Energy Storage

IGBT, Inverter / IGBT Maximum Rated Values

Collector-emitter Voltage	T _{vj} = 25°C	VCES	1200	V
Implemented Collector Current		ICnom	900	А
Continuous DC Collector Current	Tc = 45°C, T _{vj max} = 175°C	Ic	875	Α
Repetitive Peak Collector Current	tp = 1ms	ICRM	1800	А
Gate-emitter Peak Voltage		VGES	±20	V

Characteristic Values min. typ. max. Tvi = 25°C 1.55 Collector-emitter Saturation Voltage¹⁾ Ic = 900A, VGE = 15V Tvi = 125°C 1.80 V **V**CEsat T_{vj} = 175°C 1.86 **V**GEth 5.0 6.0 7.0 V Gate Threshold Voltage VCE = VGE, IC = 18mA, Tvj = 25°C Gate Charge VGE = -15V/15V, VCE = 600V 11.2 μC QG Internal Gate Resistor $T_{vj} = 25^{\circ}C$ **R**Gint 0.2 Ω Input Capacitance nF $f = 100kHz, Tv_i = 25^{\circ}C, VcE = 25V, VgE = 0V$ 199 Cies Reverse Transfer Capacitance $f = 100kHz, Tvj = 25^{\circ}C, VcE = 25V, VgE = 0V$ 0.57 nF Cres Collector-emitter Cutoff Current VCE = 1200V, VGE = 0V, Tvj = 25°C mΑ **ICES** Gate-emitter Leakage Current VcE = 0V, VGE = 20V, Tvj = 25°C IGES 500 nΑ Tvi = 25°C 197 IC = 900A, VCE = 600V Turn-on Delay Time, Inductive Load VGE = -8V/15V 262 **t**don ns T_{vj} = 125°C 267 RGON = 1Ω Tvj = 175°C IC = 900A, VCE = 600V Tvi = 25°C 93 Rise Time, Inductive Load VGE = -8V/15V107 ns tr Tvj = 125°C RGON = 1Ω 114 T_{vj} = 175°C IC = 900A, VCE = 600V $T_{Vj} = 25^{\circ}C$ 560 Turn-off Delay Time, Inductive Load VGE = -8V/15Vtdoff T_{vj} = 125°C ns 582 $RGoff = 1\Omega$ T_{vj} = 175°C 600 IC = 900A, VCE = 600V $T_{Vj} = 25^{\circ}C$ 99 Fall Time, Inductive Load VGE = -8V/15Vns 150 Tvj = 125°C $RGoff = 1\Omega$ 198 T_{vj} = 175°C IC = 900A, VCE = 600V, L_{σ} = 30nH T_{vj} = 25°C 122 Turn-on Energy Loss per Pulse VGE = -8V/15V, $RGON = 1\Omega$ Tvj = 125°C Eon 140 mJ $di/dt = 6131 (T_{vj} = 175^{\circ}C)$ 162 Tvj = 175°C IC = 900A, VCE = 600V, $L_{\sigma} = 30nH$ $T_{Vj} = 25^{\circ}C$ 75 VGE = -8V/15V, RGON = 1Ω Tvj = 125°C Eoff 92 mJ Turn-off energy Loss per Pulse $du/dt = 4762 (T_{vj} = 175^{\circ}C)$ Tvj = 175°C 112 VGE = -8V/15V3200 SC Data $t_p \le 8\mu s, T_{vj} = 150^{\circ}C$ Α VcE = 600V 3100

Thermal Resistance, Junction to Case	tΡ ≤ 6μs,Tvj = 175°C					
	Per IGBT	RthJC	_	0.037	ı	K/W
Thermal Resistance, Case to Heatsink	Per IGBT, λgrease = 1W(m•K)	RthCH	_	0.037	1	K/W
Temperature under Switching Conditions		Tvj op	-40		175	°C

Diode, Inverter Maximum Rated Values

Repetitive Peak Reverse Voltage	Tvj = 25°C	VRRM	1200	V
Continuous DC Forward Current		lFnom	900	Α
Repetitive Peak Forward Current	tp = 1ms	IFRM	1800	А

Characteristic Values min. typ. max. Tvj = 25°C 1.83 Forward Voltage¹⁾ IF = 900A, VGE = 0V T_{vj} = 150°C VF 2.12 ٧ T_{vj} = 175°C 2.25 $T_{Vj} = 25^{\circ}C$ IF = 900A, VR = 600V 420 Peak Reverse Recovery Current $-di_F/dt = 5556A/us (T_{Vj} = 175^{\circ}C)$ Tvj = 125°C lкм 444 Α VGE = −8V T_{vj} = 175°C 476 $T_{vj} = 25^{\circ}C$ 34 IF = 900A, VR = 600VRecovery Charge μC 55 $-di_F/dt = 5556A/us (T_{vj} = 175^{\circ}C)$ Tvj = 125°C QR 71 VGE = −8V Tvj = 175°C IF = 900A, VR = 600V $T_{vj} = 25^{\circ}C$ 25 $-di_F/dt = 5556A/us (T_{vj} = 175^{\circ}C)$ T_{vj} = 125°C Reverse Recovery Energy Erec mJ VGE = -8VT_{vj} = 175°C 29 Thermal Resistance, Junction to Case Per FRD K/W 0.063 RthJC 0.048 Thermal Resistance, Case to Heatsink RthCH K/W Per IGBT, λgrease = 1W(m•K) Temperature under Switching Tvj op °С Conditions

NTC-Thermistor / NTC Maximum Rated Values

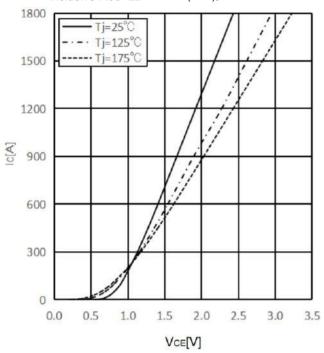
min. typ. max.

Rated Resistance	TNTC = 25°C	R25	-	5	_	ΚΩ
Deviation of R100 R100	TNTC = 100°C, R100 = 465Ω	ΔR/R	-7.3	ı	7.3	%
Power Dissipation	TNTC = 25°C	P25	ı	ı	10	mW
B-Value B	R2 = R25 exp[B25/50(1/T2-1/(298.15K))]	B25/50	I	3380	ı	K
	R2 = R25 exp[B25/80(1/T2-1/(298.15K))]	B25/80	1	3470	1	K
	R2 = R25 exp[B25/100(1/T2-1/(298.15K))]	B25/100	ı	3520	•	K

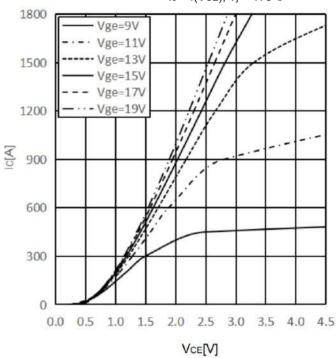
Module

Isolation Test Voltage	RMS, f=50Hz, t=1min	VisoL	3.0	kV
Material of Module Baseplate			Cu	
Internal Isolation			ZTA	
Creepage Distance	Terminal to heatsink, min Terminal to terminal, min		15.0 13.0	mm
Clearance	Terminal to heatsink, min Terminal to terminal, min		12.5 10.0	mm
Comparative Tracking Index		СТІ	200 ²⁾	

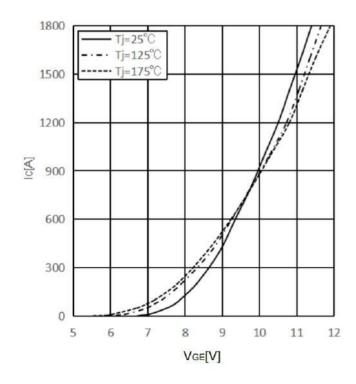
min. typ. max.

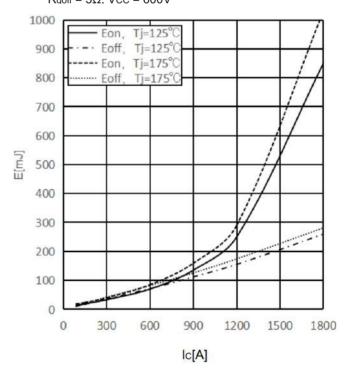

Stray Inductance Module		LsCE	_	20	_	nH
Module Lead Resistance, Terminals-Chip	Tc = 25°C, Per Switch	Rcc'+EE'	_	0.8	-	mΩ
Storage Temperature		Tstg	-40	_	125	°C
Mounting Torque for Module Mounting	Screw M5 / M5	М	3.0	_	6.0	Nm
Power terminal installation torque	Screw M6 / M6	М	3.0	_	6.0	Nm
Weight		G	_	345	_	g

¹⁾ Terminal impedance is not included. 2) CTI is about 200.

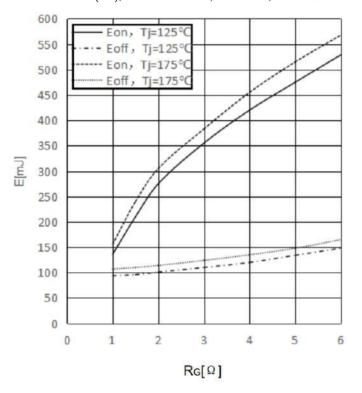


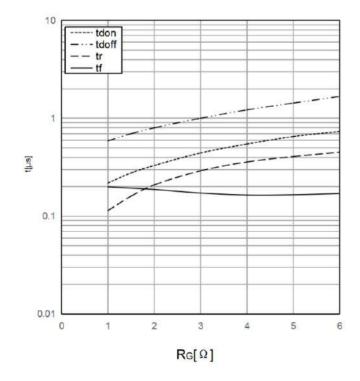
Circuit Diagram

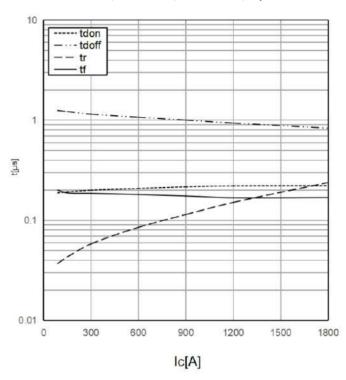

Output characteristic IGBT, Inverter (typical), Inclusive Rcc'+EE' $I_c = f(VCE)$, VGE = 15V

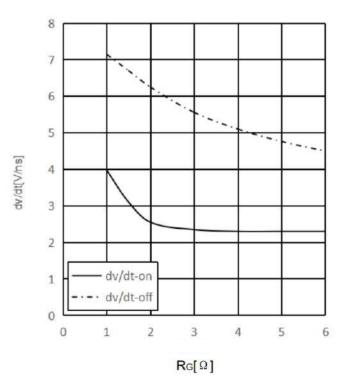

Output characteristic IGBT, Inverter (typical), Inclusive RCC'+EE' $I_C = f(VCE)$, $T_i = 175^{\circ}C$

Transfer characteristic IGBT,Inverter(typical), Inclusive RCC'+EE' Ic = f(VGE), VCE = 20V

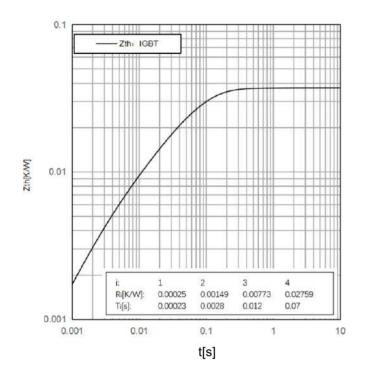

Switching losses IGBT, Inverter (Typical), Inclusive Rcc'+EE' E = f(Ic), VGE = +15V/-8V, RGon = 1Ω , Rgoff = 3Ω , Vcc = 600V

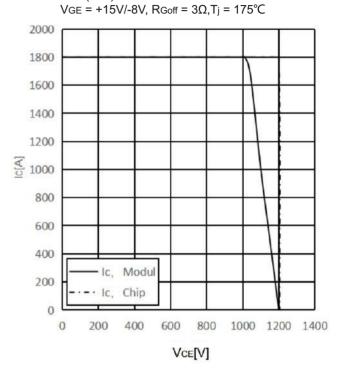



Switching losses IGBT, Inverter (Typical)
Inclusive Rcc'+EE'
E = f(RG), VGE = +15V/-8V, IC = 900A, VCE = 600V


Switching times IGBT, Inverter (Typical) $t_{don} = f(R_G)$, $t_r = f(R_G)$, $V_{GE} = +15V/-8V$, $I_{C} = 900A$, $V_{CE} = 600V$, $T_{Vj} = 175^{\circ}C$

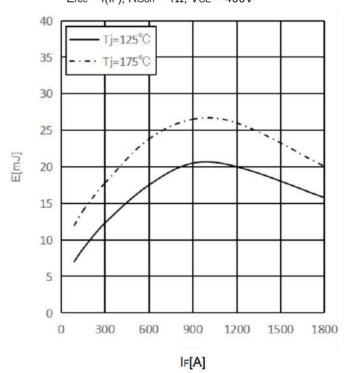
Switching times IGBT, Inverter (Typical) $t_{don} = f(Ic)$, $t_r = f(Ic)$, $V_{GE} = +15V/-8V$, $R_{Gon} = 1\Omega$, $R_{Goff} = 1\Omega$, $V_{CE} = 600V$, $T_{V_i} = 175^{\circ}C$


IGBT, Inverter (Typical) dv/dt = f(Rg), VgE = +15V/-8V Ic = 900A, VcE = 600V, Tj = 125°C

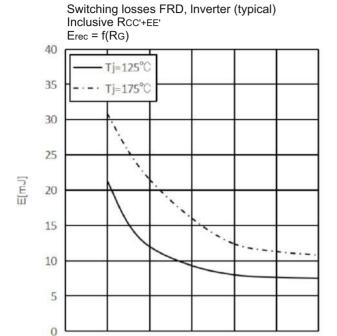


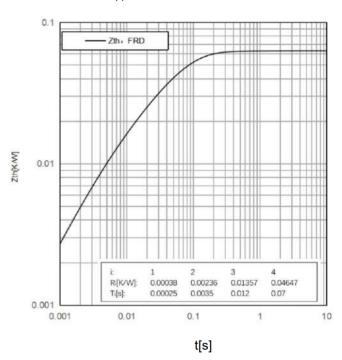
Transient thermal impedance IGBT,Inerter $Z_{thJC} = f(t)$

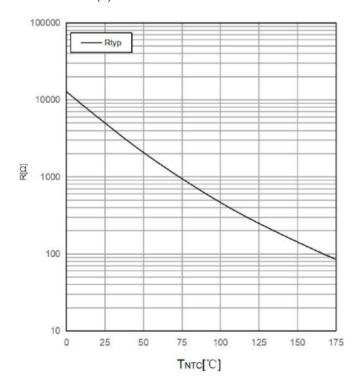
Reverse bias safe operating area IGBT, Inverter(RBSOA) Ic = f(VCE)



Forward characteristic FRD, Inverter (typical) Inclusive Rcc'+EE'


IF = f(VF)

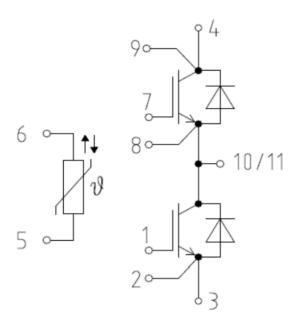

Switching losses FRD, Inverter (typical) Inclusive Rcc'+EE' Erec = f(IF), RGon = 1Ω , VcE = 400V


Transient thermal impedance FRD, Inverter $Z_{thJC} = f(t)$

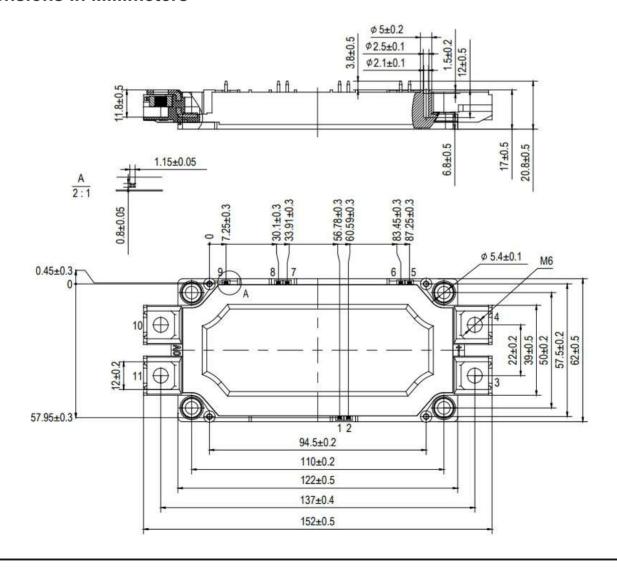
NTC Thermistor temperature characteristic (typical) R = f(T)

3

 $Rc[\Omega]$


0

1


2

Internal Circuit

Package Dimension Dimensions in Millimeters

Terms and Conditions of Usage of Technicon products

The data contained in this product datasheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application. This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant to the terms and conditions of the supply agreement. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary.

The user of Technicon products is responsible for the safety of their applications embedding Technicon products and must take adequate safety measures to prevent the applications from causing physical injury, fire, or other problems if any of Technicon products become faulty. The user is responsible for ensuring that the application design is compliant with all applicable laws, regulations, norms, and standards.

Except as otherwise explicitly approved by Technicon in a written document signed by authorized representatives of Technicon, Technicon products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Technicon does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets, or other intellectual property rights, nor the rights of others.

Technicon makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. This document supersedes and replaces all information previously supplied and may be superseded by updates. Technicon reserves the right to make changes.

For any questions or suggestions, please contact us at info@technicon.asia.

-10- Rev.1 2025-10-08